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Invariant Variation Problems

Emmy Noether

M. A. Tavel’s English translation of “Invariante Variationsprobleme,”Nachr. d. König. Gesellsch.

d. Wiss. zu Göttingen, Math-phys. Klasse, 235–257 (1918), which originally appeared in Transport

Theory and Statistical Physics, 1 (3), 183–207 (1971).0

Abstract

The problems in variation here concerned are such as to admit a continuous group (in Lie’s
sense); the conclusions that emerge from the corresponding differential equations find their most
general expression in the theorems formulated in Section 1 and proved in following sections.
Concerning these differential equations that arise from problems of variation, far more precise
statements can be made than about arbitrary differential equations admitting of a group, which
are the subject of Lie’s researches. What is to follow, therefore, represents a combination of
the methods of the formal calculus of variations with those of Lie’s group theory. For special
groups and problems in variation, this combination of methods is not new; I may cite Hamel
and Herglotz for special finite groups, Lorentz and his pupils (for instance Fokker), Weyl and
Klein for special infinite groups.1 Especially Klein’s second Note and the present developments
have been mutually influenced by each other, in which regard I may refer to the concluding
remarks of Klein’s Note.

§ 1. Preliminary Remarks and Formulation of Theorems

All functions occurring in the sequel are to be assumed analytic, or at least continuous and contin-
uously differentiable a definite number of times, and unique in the interval considered.

By a “group of transformation,” familiarly, is meant a system of transformations such that for
each transformation, there exists an inverse contained in the system, and such that the composition
of any two transformations of the system in turn belongs to the system. The group will be called a
finite continuous group Gρ if its transformations are contained in a most general (transformation)
depending analytically on ρ essential parameters ǫ (i.e., the ρ parameters are not to be representable
as ρ function of fewer parameters). Correspondingly, an infinite continuous group G∞ρ is understood
to be a group whose most general transformations depend on ρ essential arbitrary functions p(x) and
their derivatives analytically, or at least in a continuous and finite-fold continuously differentiable
manner. The group depending on infinitely many parameters but not on arbitrary functions stands
as an intermediate term between the two. Finally, a group depending both on arbitrary functions
and on parameters is called a mixed group.2

Let x1, . . . , xn be independent variables and u1(x), . . . , uµ(x) functions depending upon them. If
the x’s and u’s are subjected to the transformations of a group, then, by hypothesis of invertibility

0This paper is reproduced by Frank Y. Wang (fwang@lagcc.cuny.edu) with LATEX.
1Hamel, Math. Ann. 59 and Z. f. Math. u. Phys. 50. Herglotz, Ann. d. Phys. (4) 36, esp. § 9, p. 511. Fokker,

Verslag d. Amsterdamer Akad. Jan. 27, 1917. For further bibliography, compare Klein’s second Note, Göttinger
Nachrichten, July 19, 1918. The recently published work by Kneser (Math. Zschr. 2) deals with the setting up of
invariants by a similar method.

2Lie, in “Grundlagen für die Theorie der Unendlichen kontinuierlichen Transformationsgruppen” (Foundations of
the theory of infinite continuous groups of transformations), Ber. d. K. Sachs. Ges. d. Wissensch 1981 (cited
as Grundlagen), defines the infinite continuous group as a group of transformations which are given by the most
general solutions of a system of partial differential equations, provided these solutions do not depend only on a finite
number of parameters. One of the above-mentioned types differing from the finite group will thus be thereby obtained;
whereas conversely the limiting case of infinitely many parameters need not necessarily satisfy a system of differential
equations.
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of the transformations, there must again be exactly n independent variables y1, . . . , yn among the
transformed quantities; let the others depending upon them be designated by v1(y), . . . , vµ(y). In

the transformations, the derivatives of the u’s with respect to the x’s, namely
∂u

∂x
,
∂2u

∂x2
, . . . may also

occur.3 A function is called an invariant of the group if there subsists a relationship

P

(

x, u,
∂u

∂x
,
∂2u

∂x2
, . . .

)

= P

(

y, v,
∂v

∂y
,
∂2v

∂y2
, . . .

)

.

In particular, then, an integral I will be an invariant of the group if there subsists a relationship

I =

∫

. . .

∫

f

(

x, u,
∂u

∂x
,
∂2u

∂x2
. . .

)

dx =

∫

. . .

∫

f

(

y, v,
∂v

∂y
,
∂2v

∂y2
. . .

)

dy 4 (1)

integrated over an arbitrary real x-interval and the corresponding y-interval.5

Then, for an arbitrary, not necessarily invariant integral I, I form the first variation δI and
transform it by partial integration according to the rules of the calculus of variations. As we know,
provided δu with all derivatives that occur is assumed to vanish at the boundary, while otherwise
arbitrary,

δI =

∫

. . .

∫

δf dx =

∫

. . .

∫
(

∑

ψi

(

x, u,
∂u

∂x
, . . .

)

δui

)

dx, (2)

where ψ stands for the Lagrange expressions, i.e., the left-hand sides of the Lagrange equations
of the corresponding variation problem δI = 0. To this integral relationship there corresponds an
integral-free identity in δu and its derivatives, generated by writing in the boundary terms as well.
As the partial integration shows, these boundary terms are integrals over divergences, i.e., over
expressions

DivA =
∂A1

∂x1
+ . . .+

∂An

∂xn
,

where A is linear in δu and its derivatives. Hence

∑

ψi δui = δf +DivA. (3)

If in particular f contains only first derivatives of the u’s, then in the case of the single integral the
identity (3) is identical with what Heun calls the “central equation of Lagrange”

∑

ψi δui = δf −
d

dx

(

∑ ∂f

∂u′i
δui

)

,

(

u′i =
dui

dx

)

, (4)

whereas for the n-fold integral, (3) goes over into

∑

ψi δui = δf −
∂

∂x1

(

∑ ∂f

∂ ∂ui

∂x1

δui

)

− . . .−
∂

∂xn

(

∑ ∂f

∂ ∂ui

∂xn

δui

)

. (5)

3I suppress the subscripts, insofar as feasible, even in summations; thus,
∂2u

∂x2
for

∂2uα

∂xβ∂xγ
, etc.

4By way of abbreviation, I write dx, dy for dx1 . . . dxn, dy1 . . . dyn.
5All arguments x, u, ǫ, p(x) occurring in the transformations are to be assumed real, whereas the coefficients

may be complex. But since the final results are concerned with identities in the x’s, u’s, parameters and arbitrary
functions, these hold also for complex values, provided only that all functions that occur are assumed analytic. A
large portion of the results, incidentally, can be justified without integrals, so that here the restriction to reals is not
necessary even to the arguments. On the other hand, the developments at the close of Section 2 and beginning of
Section 5 do not appear to be feasible without integrals.
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For the single integral and κ derivatives of the u’s, (3) is given by

∑

ψi δui = δf−

−
d

dx

{

∑

(

(

1

1

)

∂f

∂u
(1)
i

δui +

(

2

1

)

∂f

∂u
(2)
i

δu
(1)
i + . . .+

(

κ

1

)

∂f

∂u
(κ)
i

δu
(κ−1)
i

)}

+

+
d2

dx2

{

∑

(

(

2

2

)

∂f

∂u
(2)
i

δui +

(

3

2

)

∂f

∂u
(3)
i

δu
(1)
i + . . .+

(

κ

2

)

∂f

∂u
(κ)
i

δu
(κ−2)
i

)}

+ . . .

+ (−1)κ
dκ

dxκ

{

∑

(

κ

κ

)

∂f

∂u
(κ)
i

δui

}

(6)

and a corresponding identity holds for the n-fold integral; in particular, A contains δu as far as the
(κ − 1)st derivative. The fact that (4), (5), and (6) actually define the Lagrange expressions ψi

follows from the fact that the combinations of the right-hand sides eliminate all higher derivatives
of the δu’s, while on the other hand the relation (2), to which the partial integration leads uniquely,
is satisfied.

Now in the following we shall be concerned with these two theorems:

I. If the integral I is invariant with respect to a Gρ, then ρ linearly independent combinations
of the Lagrange expressions become divergences — and from this, conversely, invariance of I
with respect to a Gρ will follow. The theorem holds good even in the limiting case of infinitely
many parameters.

II. If the integral I is invariant with respect to a G∞ρ in which the arbitrary functions occur
up to the σ-th derivative, then there subsist ρ identity relationships between the Lagrange
expressions and their derivatives up to the σ-th order. In this case also, the converse holds.6

For mixed groups, the statements of both theorems hold; that is, both dependencies and diver-
gence relations independent thereof occur.

Passing over from these identities to the corresponding variation problem, i.e., putting ψ = 0,7

Theorem I in the one-dimensional case — where the divergence goes over into a total differential
— asserts the existence of ρ first integrals, between which, however, non-linear dependencies may
subsist;8 in the multidimensional case, the divergence equations often referred to of late as “laws of
conservation” are obtained; Theorem II states that ρ of the Lagrange equations are a consequence
of the rest.

The simplest example of Theorem II — without converse — is afforded by the Weierstrass para-
metric representation; here the integral, with homogeneity of first order, is as we know invariant if the
independent variable x is replaced by an arbitrary function of x that leaves u unchanged (y = p(x);
vi(y) = ui(x)). Thus one arbitrary function occurs, but without derivatives, and to this corresponds

the known linear relationship among the Lagrange expressions themselves
∑

ψi

dui

dx
= 0. Another

example is presented by the “general theory of relativity” of the physicists; there we have the group
of all transformations yi = pi(x) of the x’s, while the u’s (designated as gµν and q) are subjected to
the transformations thereby induced for the coefficients of a quadratic and linear differential form —
transformations which contain the first derivatives of the arbitrary function p(x). To this correspond
the familiar n dependencies between the Lagrange expressions and their first derivatives.9

If in particular we specialize the group by allowing no derivatives of the u(x)’s in the transforma-
tions, and moreover let the transformed independent quantities depend only on the x’s, not on the
u’s, then (as is shown in Section 5) the invariance of I entails the relative invariance of

∑

ψiδui,
10

6For certain trivial exceptions, compare Section 2, Note 13.
7Somewhat more generally, we may alternatively put ψi = Ti; cf. Section 3, Note 15.
8Cf. close of Section 3.
9Cf. e.g., Klein’s presentation.

10That is,
∑

ψiδui acquires a factor upon transformation.
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and likewise of the divergences occurring in Theorem I, once the parameters are subjected to suitable
transformations. For Theorem II, similarly, we get relative invariance of the left-hand sides of the
dependencies as associated with the aid of the arbitrary functions; and as a consequence of this,
another function whose divergence vanishes identically and admits of the group — mediating, in the
physicists’ theory of relativity, the connection between dependencies and the law of conservation of
energy.11 Theorem II, finally, in terms of group theory, furnishes the proof of a related Hilbertian
assertion about the failure of laws of conservation of energy proper in “general relativity.” With
these supplementary remarks, Theorem I comprises all theorems on first integrals known to mechan-
ics etc., while Theorem II may be described as the utmost possible generalization of the “general
theory of relativity” in group theory.

§ 2. Divergence Relationships and Dependencies

Let G be a — finite or infinite — continuous group; then it is always possible to arrange for the
zero values of the parameters ǫ, or of the arbitrary function p(x), to correspond to the identity
transformation.12 The most general transformation will therefore be of the form

yi = Ai

(

x, u,
∂u

∂x
, . . .

)

= xi +∆xi + . . .

vi(y) = Bi

(

x, u,
∂u

∂x
, . . .

)

= ui +∆ui + . . .

where ∆xi, ∆ui stand for the terms of lowest dimension in ǫ, or p(x) and its derivatives; in which,
in fact, they will be assumed linear. As will afterwards appear, this is no restriction of generality.

Now let the integral I be an invariant with respect to G, satisfying, that is, the relationship (1).
Then in particular, I will also be invariant with respect to the infinitesimal transformation

yi = xi +∆xi; vi(y) = ui +∆ui;

contained in G, and for this relation (1) goes over into

0 = ∆I =

∫

. . .

∫

f

(

y, v(y),
∂v

∂y
, . . .

)

dy −

∫

. . .

∫

f

(

x, u(x),
∂u

∂x
, . . .

)

dx, (7)

where the first integral is to be extended over the x +∆x interval corresponding to the x-interval.
But this integration may alternatively be transformed into an integration over the x-interval, by
virtue of the transformation, valid for infinitesimal ∆x,

∫

. . .

∫

f

(

y, v(y),
∂v

∂y
, . . .

)

dy =

∫

. . .

∫

f

(

x, v(x),
∂v

∂x
, . . .

)

dx+

∫

. . .

∫

Div (f ·∆x) dx. (8)

So if in place of the infinitesimal transformation ∆u, we introduce the variation

δui = vi(x)− ui(x) = ∆ui −
∑ ∂ui

∂xλ
∆xλ, (9)

then (7) and (8) go over into

0 =

∫

. . .

∫

{

δf +Div(f ·∆x)
}

dx. (10)

The right-hand side is the familiar formula for simultaneous variation of the dependent and inde-
pendent variables. Since the relation (10) is satisfied for integration over any arbitrary interval, the

11Compare Klein’s second note.
12Cf. e.g., Lie, Grundlagen, p. 331. Where arbitrary functions are concerned, the special values aσ of the parameters

are to be replaced by fixed functions pσ,
∂pσ

∂x
, . . .; and correspondingly, the values aσ + ǫ by p+ p(x),

∂pσ

∂x
+
∂p

∂x
, etc.
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integrand must vanish identically; therefore Lie’s differential equations for the invariance of I goes
over into the relation

δf +Div(f ·∆x) = 0. (11)

If in this, by (3), δf is expressed in terms of the Lagrange expressions, we get

∑

ψiδui = DivB (B = A− f ·∆x), (12)

and this relationship, therefore, for every invariant integral I, represents an identity in all arguments
that occur; it is the required form of Lie’s differential equations for I.13

Now for the present let G be taken to be a finite continuous group Gρ; since by hypothesis ∆u
and ∆x are linear in the parameters ǫ1, . . ., ǫρ, hence by (9) the same holds for δu and its derivatives;
therefore A and B are linear in the ǫ’s. So if I let

B = B(1)ǫ1 + . . .+B(ρ)ǫρ; δu = δu(1)ǫ1 + . . .+ δu(ρ)ǫρ,

where, that is δu(1), . . . are functions of x, u,
∂u

∂x
, . . ., the required divergence relationships follow

from (12):
∑

ψiδu
(1)
i = DivB(1); . . .

∑

ψiδu
(ρ)
i = DivB(ρ). (13)

Thus ρ linearly independent combinations of the Lagrange expressions become divergences; the linear
independence follows from the fact that by (9), δu = 0, ∆x = 0 would entail ∆u = 0, ∆x = 0, or
in other words a dependency between the infinitesimal transformations. But by hypothesis, none
such is satisfied for any value of the parameters, since otherwise the Gρ regenerated by integration
from the infinitesimal transformations would depend on fewer than ρ essential parameters. But the
further possibility δu = 0, Div(f ·∆x) = 0 was excluded. These conclusions hold good even in the
limiting case of infinitely many parameters.

Now let G be an infinite continuous group G∞ρ; then δu and its derivatives, and hence B also,
will again be linear in the arbitrary functions of p(x) and their derivatives;14 independently of (12),
further, by substitution of the values of δu, let

∑

ψiδui =
∑

λ,i

ψi

{

a
(λ)
i (x, u, . . .)p(λ)(x) + b

(λ)
i (x, u, . . .)

∂p(λ)

∂x
+ . . .+ c

(λ)
i (x, u, . . .)

∂σp(λ)

∂xσ

}

.

Now, by the identity

ϕ(x, u, . . .)
∂τp(x)

∂xτ
= (−1)τ ·

∂τϕ

∂xτ
· p(x) mod Divergences

and analogously to the partial integration formula, the derivatives of p can be replaced by p itself
and by divergences that will be linear in p and its derivatives; hence we get

∑

ψiδui =
∑

λ

{

(a
(λ)
i ψi)−

∂

∂x
(b

(λ)
i ψi) + . . .+ (−1)σ

∂σ

∂xσ
(c

(λ)
i ψi)

}

p(λ) +Div Γ (14)

and in conjunction with (12)

∑

{

(a
(λ)
i ψi)−

∂

∂x
(b

(λ)
i ψi) + . . .+ (−1)σ

∂σ

∂xσ
(c

(λ)
i ψi)

}

p(λ) = Div(B − Γ). (15)

I now form the n-fold integral over (15), extended over any interval; and choose the p(x)’s such
that they, with all derivatives occurring in (B − Γ), will vanish at the boundary. Since the integral

13(12) goes over into 0 = 0 for the trivial case — which can occur only if ∆x, ∆u depend also on derivatives of the
u’s — when Div(f · ∆x) = 0, δu = 0; thus these infinitesimal transformations are always to be eliminated from the
groups, and only the number of remaining parameters, or arbitrary functions, is to be counted in the formulation of
the theorems. Whether the remaining infinitesimal transformations still form a group must be left moot.

14That it signifies no restriction to assume the p’s free from u,
∂u

∂x
, is shown by the converse.
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over a divergence reduces to a boundary integral, then, the integral over the left side of (15) will
also vanish for p(x)’s which are arbitrary except that they and sufficiently many of their derivatives
vanish at the boundary; and thence follows, by known inferences, the vanishing of the integrand for
every p(x), or in other words the ρ relationships:

∑

{

(a
(λ)
i ψi)−

∂

∂x
(b

(λ)
i ψi) + . . .+ (−1)σ

∂σ

∂xσ
(c

(λ)
i ψi)

}

= 0 (λ = 1, 2, . . . , ρ). (16)

These are the required dependencies between the Lagrange expressions and their derivatives for
invariance of I with respect to G∞ρ; the linear independence is proved as above, since the converse
leads back to (12), and since we can again argue back from the infinitesimal transformations to the
finite ones, as will be explained more fully in Section 4. In the case of a G∞ρ, that is to say, even
in the infinitesimal transformations there always occur ρ arbitrary transformations. Equation (15)
and (16) further entail Div(B − Γ) = 0.

If, as corresponds to a “mixed group,” ∆x and ∆u are taken linear in the ǫ’s and p(x)’s, then
we see, by equating first the p(x)’s and then the ǫ’s to zero, that both divergence relationships (13)
and dependencies (16) hold.

§ 3. Converse in Case of Finite Group

To prove the converse, we are first to run through essentially the foregoing arguments in reverse order.
From the fact of (13), by multiplication by the ǫ’s and adding, the fact of (12) follows; and thence,

by virtue of the identity (3), a relationship δf +Div(A−B) = 0. So if we put ∆x =
1

f
(A−B), we

have thereby arrived at (11); whence finally, by integration, there follows (7), ∆I = 0, or in other
words the invariance of I with respect to the infinitesimal transformation determined by ∆x, ∆u,
where ∆u’s by virtue of (9) are determined from ∆x and δu, and ∆x and ∆u become linear in the
parameters. But ∆I = 0 entails, in known manner, the invariance of I with respect to the finite
transformations generated by integration of the simultaneous system

dxi

dt
= ∆xi;

dui

dt
= ∆ui; (xi = yi, ui = vi, for t = 0). (17)

These finite transformations contain ρ parameters a1 . . . aρ, namely the combinations tǫ1, . . ., tǫρ.
From the assumption that there are ρ and only ρ linearly independent divergence relationships (13),

it follows further that the finite transformations, once they do not contain the derivatives
∂u

∂x
, always

form a group. For in the contrary case, at least one infinitesimal transformation generated by Lie’s
bracketing process would fail to be a linear combination of the other ρ; and since I admits of this
transformation also, there would be more than ρ linearly independent divergence relationships; or
else that infinitesimal transformation would be of the special form where δu = 0, Div(f ·∆x) = 0, but
in that case ∆x or ∆u, contrary to hypothesis, would depend on derivatives. Whether this case can
arise when derivatives occur in ∆x or ∆u must be left moot; in that case, the ∆x determined above
must be augmented by all functions ∆x for which Div(f · ∆x) = 0 to restore the group property,
but by agreement the parameters thereby adjoined are not to count. This completes the proof of
the converse.

From this conversion, it follows further that ∆x and ∆u can actually be assumed linear in the
parameters. For if ∆u and ∆x were forms of higher degree in ǫ, then by the linear independence of
the power products of the ǫ’s, quite analogous relations (13) would follow, only in greater number,
from which, by the converse, invariance of I follows with respect to a group whose infinitesimal
transformations contain the parameters linearly. If this group is to contain exactly ρ parameters, then
linear dependencies must subsist between the divergence relationships originally obtained through
the terms of higher degree in ǫ.

Let us add the remark that in the case where ∆x and ∆u also contain derivatives of the u’s,
the finite transformations may depend on infinitely many derivatives of the u’s; for in that case the

6



integration of (17), in the determination of
d2xi

dt2
,
d2ui

dt2
leads to ∆

(

∂u

∂xκ

)

=
∂∆u

∂xκ
−
∑

λ

∂u

∂xλ

∂∆xλ
∂xκ

,

so that the number of derivatives in general increases at each step. By way of example, say,

f =
1

2
u′2; ψ = −u′′; ψ · x =

d

dx
(u− u′x); δu = x · ǫ;

∆x =
−2u

u′2
ǫ; ∆u =

(

x−
2u

u′

)

· ǫ

Since the Lagrange expressions of a divergence vanish identically, the converse shows, finally, the
following: if I admits of a Gρ, then any integral that differs from I only by a boundary integral, i.e.,
by an integral over a divergence, likewise admits of a Gρ having the same δu’s whose infinitesimal
transformations will in general contain derivatives of the u’s. Thus for instance, corresponding to

the above example, f∗ =
1

2

{

u′2 −
d

dx

(

u2

x

)}

admits of the infinitesimal transformation ∆u = xǫ,

∆x = 0; while derivatives of the u’s occur in the infinitesimal transformations corresponding to f .
Passing over to the variations problem, i.e., putting ψi = 0,15 (13) goes over into the equation

DivB(1) = 0, . . . ,DivB(ρ) = 0, often referred to as “laws of conservation.” In the one-dimensional
case, it follows from this that B(1) = const., B(ρ) = const.; and here the B’s contain at most (2κ−1)st
derivatives of the u’s (by (6)), provided ∆u and ∆x contain no higher derivatives than the κ-th one
occurring in f . Since 2κ-th derivatives in general occur in ψ,16 therefore, we have the existence of ρ
first integrals. That there may be non-linear dependencies among these is again shown by the above
f . To the linearly independent ∆u = ǫ1, ∆x = ǫ2 there correspond the linearly independent relations

u′′ =
d

dx
u′; u′′ · u′ =

1

2

d

dx
(u′)

2
; whereas between the first integrals u′ = const., u′2 = const. a non-

linear dependency exists. This relates to the elementary case where ∆u, ∆x contain no derivatives
of the u’s.17

§ 4. Converse in Case of Infinite Group

First let us show that the assumption of linearity of ∆x and ∆u constitutes no restriction, a con-
clusion which follows, even without the converse, from the fact that G∞ρ formally depends on ρ

and only ρ arbitrary functions. For it turns out that in the non-linear case, upon composition of
the transformations, whereby the terms of lowest order are added together, the number of arbitrary
functions would increase. In fact, say, let

y = A

(

x, u,
∂u

∂x
, . . . ; p

)

= x+
∑

a(x, u, . . .)pν + b(x, u, . . .)pν−1 ∂p

∂x

+c pν−2

(

∂p

∂x

)2

+ . . .+ d

(

∂p

∂x

)ν

+ . . .
(

pν = (p(1))ν1 . . . (p(ρ))νρ
)

;

and correspondingly v = B

(

x, u,
∂u

∂x
, . . . ; p

)

; then by composition with z = A

(

y, v,
∂v

∂y
, . . . ; q

)

, for

the terms of lowest order, we get

z = x+
∑

a(pν + qν) + b

{

pν−1 ∂p

∂x
+ qν−1 ∂q

∂x

}

+ c

{

pν−2

(

∂p

∂x

)2

+ qν−2

(

∂q

∂x

)2
}

+ . . . .

15ψi = 0, or, somewhat more generally, ψi = Ti, where Ti are newly adjoined functions, are referred to in physics

as “field equations.” In the case ψi = Ti, the identities (13) goes over into equations DivB(λ) =
∑

Tiδu
(λ)
i , likewise

known in physics as laws of conservation.
16Provided f is non-linear in the κ-th derivatives.
17Otherwise we also have u′λ = const. for every λ, corresponding to

u′′ · (u′)λ−1 =
1

λ

d

dx
(u′)λ.
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Here, if any coefficient different from a and b is different from zero, in other words, if a term

pν−σ

(

∂p

∂x

)σ

+ qν−σ

(

∂q

∂x

)σ

actually occurs for σ > 1 it cannot be written as a differential quo-

tient of a single function or power product of one; the number of arbitrary functions, contrary to
hypothesis, has thus increased. If all coefficients different from a and b vanish, then, according to
the values of the exponents ν1, . . ., νρ, the second term will become the differential quotient of the
first (as always, for example, for a G∞1), so that linearity does actually result; or else the number
of arbitrary functions must again increase. The infinitesimal transformations, then, owing to the
linearity of the p(x)’s, satisfy a system of linear partial differential equations; and since the group
property is satisfied, they constitute an “infinite group of infinitesimal transformations” accord to
Lie’s definition (Grundlagen, § 10).

Now the converse is arrived at similarly to the case of the finite group. The fact that the
dependencies (16) hold leads, through multiplication by p(λ) and addition, by virtue of the identity
transformation (14), to

∑

ψiδui = Div Γ and thence, as in Section 3 follows the determination of
∆x and ∆u and the invariance of I with respect to these infinitesimal transformations, which do
actually depend linearly on ρ arbitrary functions and their derivatives up to the σ-th order. The

fact that these infinitesimal transformations, if they contain no derivatives
∂u

∂x
, . . ., certainly form a

group, follows, as in Section 3, from the fact that otherwise, by composition more arbitrary functions
would occur, whereas by assumption there are to be only ρ dependencies (16); hence they form an
“infinite group of infinitesimal transformations.” But such a one consists (Grundlagen, Theorem
VII, p. 391) of the most general infinitesimal transformations of a certain “infinite group G of finite
transformations,” in Lie’s sense, thereby defined. Each such finite transformation is generated from
infinitesimal ones (Grundlagen, § 7),18 and so arises through integration of the simultaneous system

dxi

dt
= ∆xi;

dui

dt
= ∆ui; (xi = yi, ui = vi, for t = 0),

where, however, it may be necessary further to assume the arbitrary p(x)’s dependent on t. Thus G
does actually depend on ρ arbitrary functions; if in particular it suffices to assume p(x) free from t,

then this dependency becomes analytic in the arbitrary function q(x) = t · p(x).19 If derivatives
∂u

∂x
,

. . ., occurs, it may be necessary also to adjoin infinitesimal transformation(s) δu = 0, Div(f ·∆x) = 0
before drawing the same conclusions.

In terms of an example of Lie’s (Grundlagen, § 7), let us add mention of a fairly general case
in which it is possible to break through to explicit formulas, which at the same time show that
the derivatives of the arbitrary functions up to the σ-th order to occur; where, in other words,
the converse is complete. I refer to such groups of infinitesimal transformations of the u’s thereby
“induced” corresponds; i.e., such transformations of the u’s for which ∆u, and consequently u,

depend only on the arbitrary functions occurring in ∆x; assuming further that the derivatives
∂u

∂x
,

. . . do not occur in ∆u. That is we have

∆xi = p(i)(x); ∆ui =

n
∑

λ=1

{

a(λ)(x, u)p(λ) + b(λ)
∂p(λ)

∂x
+ . . .+ c(λ)

∂σp(λ)

dxσ

}

.

Since the infinitesimal transformation ∆x = p(x) generates every transformation ∆x = y+g(y) with
arbitrary g(y), we can in particular determine p(x) to depend on t in such a matter as to generate
the single-member group

xi = yi + t · gi(y), (18)

18Hence it follows in particular that the group G generated from the infinitesimal transformations ∆x, ∆u of a
G∞ρ reduces back to G∞ρ. For G∞ρ contains no infinitesimal transformations distinct from ∆x, ∆u dependent on
arbitrary functions, and cannot contain any independent of them but depending on parameters, as otherwise it would
be a mixed group. But according to the above, the infinitesimal transformations determine the finite ones.

19The question whether perhaps this latter case always occurs was raised in a different formulation by Lie (Grund-
lagen, § 7 and § 13 at end).
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which goes over into the identity for t = 0 and into the required x = y + g(y) for t = 1. For by
differentiation of (18), it follows that

dxi

dt
= gi(y) = p(i)(x, t), (19)

where p(x, t) is determined from g(y) by inversion of (18); and conversely, (18) is generated from (19)
by virtue of the auxiliary condition xi = yi for t = 0, by which the integral is uniquely determined.
By means of (18), the x’s can be replaced in ∆u by the “constants of integration” y and by t;

the g(y)’s occurring just up to the σ-th derivative, the
∂y

∂x
’s being expressed in terms of

∂x

∂y
in

∂p

∂x
=
∑ ∂g

∂yκ

∂yκ

∂x
, and

∂σp

∂xσ
being in general replaced by its value in

∂g

∂y
, . . .,

∂x

∂y
, . . .,

∂σx

∂yσ
. For

the determination of the u’s we thus obtain the system of equations

dui

dt
= Fi

(

g(y),
∂g

∂y
, . . .

∂σg

∂yσ
, u, t

)

(ui = vi for t = 0)

in which only t and u are variables, while the g(y), . . . pertain to the field of coefficients, so that
integration yields

ui = vi +Bi

(

v, g(y),
∂g

∂y
, . . .

∂σg

∂yσ
, t

)

t=1

,

or transformations depending on exactly σ derivatives of the arbitrary functions. The identity is
contained in this, by (18), for g(y) = 0; and the group property follows from the fact that the method
specified affords every transformation x = y + g(y), whereby the induced transformation of the u’s
is uniquely determined, and the group G accordingly exhausted.

From the converse it follows incidentally that it constitutes no restriction to assume the arbitrary

functions to be dependent only on the x’s, not on the u,
∂u

∂x
, . . .. For in the latter event, the

identity transformation (14), and hence also (15), would involve not only the p(λ)’s but also
∂p(λ)

∂u
,

∂p(λ)

∂ ∂u
∂x
, . . .

. Now if we assume the p(λ)’s to be successively of the zeroth, first, . . . degree in u,
∂u

∂x
,

. . ., with arbitrary functions of x as coefficients, then we again obtain dependencies (16), only
in greater number; which, however, according to the above converse, through conjunction with
arbitrary functions dependent on x only, reduce to the previous case. In the same way it is shown that
mixed groups correspond to simultaneous occurrence of dependencies and of divergence relationships
independent of them.20

20As in Section 3, it here again follows from the converse that besides I, every integral I∗ different from it by an
integral over a divergence likewise admits of an infinite group, with the same δu’s, though ∆x and ∆u will in general
involve derivatives of the u’s. Such an integral I∗ was introduced by Einstein in the general theory of relativity to
obtain a simpler version of laws of conservation of energy; I specify the infinitesimal transformations that this I∗

admits of, adhering precisely in nomenclature to Klein’s second Note. The integral I =
∫

. . .
∫

K dω =
∫

. . .
∫

K dS

admits of the group of all transformations of the ω’s and those induced thereby for the gµν ’s; to this correspond the
dependencies (Klein’s (30))

∑

Kµνg
µν
τ + 2

∑ ∂gµνKµτ

∂ωσ
= 0.

Now I∗ =
∫

. . .
∫

K∗ dS, where K∗ = K + Div, and consequently K∗

µν = Kµν , where K∗

µν , Kµν stand in each instance
for the Lagrange expressions. The dependencies specified are therefore such for K∗

µν also; and after multiplication by
pτ and addition, we obtain, applying the transformations of product differentiation in reverse,

∑

Kµνp
µν + 2 Div

(

∑

gµσKµτ p
τ
)

= 0;

δK∗ +Div
∑

(

2gµσKµτp
τ −

∂K∗

∂g
µν
σ

pµν
)

= 0.

Comparing this with Lie’s differential equation δK∗ +Div(K∗∆ω) = 0,

∆ωσ =
1

K∗
·
∑

(

2gµσKµτ p
τ −

∂K∗

∂g
µν
σ

pµν
)

; ∆gµν = pµν +
∑

gµνσ ∆ωσ
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§ 5. Invariance of the Several Constituents of the Relations

If we specialize the group G to be the simplest case usually considered by allowing no derivatives
of the u’s in the transformations, and in that the transformed independent variables depend only
on the x’s not on the u’s, we can infer invariance of the several constituents in formulas. To begin
with, by known arguments, we get invariance of

∫

. . .
∫

(
∑

ψδui) dx; relative invariance, that is of
∑

ψiδui,
21 meaning by δ any variation. For we have in the first place

δI =

∫

. . .

∫

δf

(

x, u,
∂u

∂x
, . . .

)

dx =

∫

. . .

∫

δf

(

y, v,
∂v

∂y
, . . .

)

dy,

and in the second place, for δu, δ
∂u

∂x
, . . . vanishing at the boundary, according to which δv, δ

∂v

∂y
, . . .

vanishing at the boundary also owing to the linear homogeneous transformation of the δu, δ
∂u

∂x
, . . .,

∫

. . .

∫

δf

(

x, u,
∂u

∂x
, . . .

)

dx =

∫

. . .

∫

(

∑

ψi(u, . . .)δui

)

dx;

∫

. . .

∫

δf

(

y, v,
∂v

∂y
, . . .

)

dy =

∫

. . .

∫

(

∑

ψi(v, . . .)δvi

)

dy,

and consequently, for δu, δ
∂u

∂x
, . . . vanishing at the boundary,

∫

. . .

∫

(

∑

ψi(u, . . .)δui

)

dx =

∫

. . .

∫

(

∑

ψi(v, . . .)δvi

)

dy

=

∫

. . .

∫

(

∑

ψi(v, . . .)δvi

)

∣

∣

∣

∣

∂yi

∂xκ

∣

∣

∣

∣

dx.

If in the third integral y, v, δv are expressed in terms of x, u, δu, and the third is equated to the
first, we thus have a relationship

∫

. . .

∫

(

∑

χi(u, . . .)δui

)

dx = 0

for δu vanishing at the boundary but otherwise arbitrary, and thence follows, familiarly, the vanishing
of the integrand for any δu whatever; the relation

∑

ψi(u, . . .)δui =

∣

∣

∣

∣

∂yi

∂xκ

∣

∣

∣

∣

(

∑

ψi(v, . . .)δvi

)

,

identical in δu, therefore holds, asserting the relative invariance of
∑

ψiδui and consequently the
invariance of

∫

. . .
∫

(
∑

ψiδui) dx.
22

follow as infinitesimal transformations of which I∗ admits. These infinitesimal transformations, then depend on the
first and second derivatives of the gµν ’s, and contain the arbitrary p’s as far as the first derivative.

21That is,
∑

ψiδui takes on a factor upon transformation, and this always used to be termed relative invariance in
the algebraic theory of invariance.

22These conclusions fail if y depends also on the u’s, since in that case δf

(

y, v,
∂v

∂y
, . . .

)

also contains terms

∑ ∂f

∂y
δy, so that the divergence transformation does not lead to the Lagrange expressions; and similarly if derivatives

of the u’s are admitted; for in that case the δv’s become linear combinations of δu, δ
∂u

∂x
, . . ., and so lead only

after another divergence transformation to an identity
∫

. . .
∫

(
∑

χi(u, . . .)δu) dx = 0, so that again the Lagrange
expressions do not appear on the right.

The question whether it is possible to argue from the invariance of
∫

. . .
∫

(
∑

ψiδui) dx back to the subsistence of
divergence relationships is synonymous, according to the converse, with the question whether one can thence infer
the invariance of I with respect to a group leading not necessarily to the same ∆u, ∆x, but to the same δu’s. In the
special case of the single integral and only first derivatives in f , it is possible for the finite group to argue from the
invariance of the Lagrange expressions to the existence of first integrals (c.f. e.g., Engel, Gött. Nachr. 1916, p. 270).
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To apply this to the divergence relationships and dependencies derived, we must first demonstrate
that the δu derived from the ∆u, ∆x’s does in fact satisfy the laws of transformation for the variation
δu, provided only that the parameters, or arbitrary functions, in δv are so determined as corresponds
to the similar group of infinitesimal transformations in y, v; if Tq designates the transformation that
carries x, u over into y, v, and Tp and infinitesimal one in x, u, then the one similar thereto in y,
v is given by Tr = TqTpT

−1
q , where the parameters, or arbitrary functions r, are thus determined

from p and q. In formulas, this is expressed as follows:

Tp : ξ = x+∆x(x, p); u∗ = u+∆u(x, u, p);

Tq : y = A(x, q); v = B(x, u, q);

TqTp : η = A(x+∆x(x, p), q); v∗ = B(x+∆x(p), u +∆u(p), q).

But this generates Tr = TqTpT
−1
q , or

η = y +∆y(r); v∗ = v +∆v(r),

if by the inverse Tq we regard the x’s as functions of the y’s and consider only the infinitesimal
terms; so we have the identity

η = y +∆y(r) = y +
∑ ∂A(x, q)

∂x
∆x(p);

v∗ = v +∆v(r) = v +
∑ ∂B(x, u, q)

∂x
∆x(p) +

∑ ∂B(x, u, q)

∂u
∆u(p). (20)

Replacing ξ = x + ∆x by ξ −∆ξ in this so that ξ goes back into x, and ∆x vanishes, by the first
equation (20) η too will go back over into y = η −∆η; if by this substitution ∆u(p) goes over into
δu(p), then ∆v(r) will go over into δv(r) as well, and the second formula (20) gives

v + δv(y, v, . . . r) = v +
∑ ∂B(x, u, q)

∂u
δu(p),

δv(y, v, . . . r) =
∑ ∂B

∂uκ
δuκ(x, u, p),

so that the transformation formulas for variations are actually satisfied provided δv is assumed to
depend only on the parameters or arbitrary functions r.23

So in particular, the relative invariance of
∑

ψiδui follows: hence also, by (12), since the diver-
gence relationships are satisfied in y, v as well, the relative invariance of DivB; and further, by (14)
and (13), the relative invariance of Div Γ and of the left-hand sides of the dependencies as conjoined
with the p(λ)’s, where the arbitrary p(x)’s (or the parameters) are to be replaced by the r’s every-
where in the transformed formulas. This leads as well to the relative invariance of Div(B − Γ), or
of a divergence of a not identically vanishing system of functions B − Γ whose divergence vanishes
identically.

From the relative invariance of DivB, we can draw additional inference of invariance of the first
integral in the one-dimensional case and for finite group. The parametric transformation correspond-
ing to the infinitesimal transformation becomes, by (20), linear and homogeneous, and owing to the
invertibility of all transformations, the ǫ’s also will be linear and homogeneous in the transformed
parameters ǫ∗. This invertibility is certainly preserved if we put ψ = 0, since no derivatives of the
u’s occur in (20). Through equating the coefficients of the ǫ∗’s in

DivB(x, u, . . . ǫ) =
dy

dx
·DivB(y, v, . . . ǫ∗)

23It turns out again that y must be taken independent of u in order for the conclusions to hold. As an example,
consider the δgµν and δqρ given by Klein, which satisfy the transformations for variations provided the p’s are
subjected to a vector transformation.
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the
d

dy
B(λ)(y, v, . . .)’s therefore also become linear homogeneous functions of

d

dx
B(λ)(x, u, . . .)’s so

that
d

dx
B(λ)(x, u, . . .) = 0 or B(λ)(x, u) = const. duly entails

d

dy
B(λ)(y, v, . . .) = 0 or B(λ)(y, v) =

const. as well. So the ρ first integrals corresponding to a Gρ in each instance admit of the group,
with result that the further integration is simplified. The simplest example of this is that f is free
of x or of a u, which corresponds to the infinitesimal transformation ∆x = ǫ, ∆u = 0, or ∆x = 0,

∆u = ǫ. We shall have δu = −ǫ
du

dx
or ǫ respectively, and since B is derived from f and δu by

differentiation and rational combination, it is free accordingly of x or u respectively, and admits of
the corresponding groups.24

§ 6. A Hilbertian Assertion

From the foregoing, finally, we also obtain the proof of a Hilbertian assertion about the connection
of the failure of laws of conservation of energy proper with “general relativity” (Klein’s first Note,
Göttinger Nachr. 1917, Reply 1st paragraph), and that in a generalized group theory version.

Let the integral I admit of a G∞ρ, and let Gρ be any finite group generated by specializing the
arbitrary functions, and hence a subgroup of G∞ρ. Then to the infinite group G∞ρ there correspond
dependencies (16), and to the finite one Gσ, divergence relationships (13); and conversely from the
subsistence of any divergence relationships, the invariance of I follows, with respect to some finite
group which will be identical with Gσ if and only if the δu’s are linear combinations of those obtained
from Gσ. Thus the invariance with respect to Gσ cannot lead to any divergence relationships
different from (13). But since the subsistence of (16) entails the invariance of I with respect to the
infinitesimal transformations, ∆u, ∆x of G∞ρ for any p(x), it entails in particular nothing less than
invariance with respect to the infinitesimal transformations of Gσ arising therefrom by specialization

and consequently with respect to Gσ. Thus the divergence relationships
∑

ψiδu
(λ)
i = DivB(λ) must

be consequences of the dependencies (16), which latter may alternatively be written
∑

ψia
(λ)
i =

Divχ(λ) where the χ(λ)’s are linear combinations of the Lagrange expressions and their derivatives.
Since the ψ’s occur linearly in both (13) and (16), the divergence relations must thus in particular

be linear combinations of the dependencies (16); Accordingly, DivB(λ) = Div
(

∑

α · χ(κ)
)

; and

the B(λ)’s themselves are thus linearly composed of the χ’s, i.e., the Lagrange expressions and their
derivatives, and of functions whose divergence vanishes identically, say like the B−Γ’s encountered
at the close of Section 2, for which Div(B − Γ) = 0, and where the divergence at the same time has
the invariant property. I shall refer to divergence relationships in which the B(λ)’s can be composed
from the Lagrange expressions and their derivatives in the specified manner as “improper,” and to
all other as “proper.”

If conversely the divergence relations are linear combinations of the dependencies (16), and so
“improper,” invariance with respect to Gσ follows from that with respect to G∞ρ; Gσ becomes a
subgroup of G∞ρ. The divergence relationships corresponding to an infinite group Gσ will thus be
improper if and only if Gσ is a subgroup of an infinite group invariant with respect to I.

By specialization of the groups, this yields the original Hilbertian assertion. Let “displacement
group” be understood to mean the finite

yi = xi + ǫi; vi(y) = ui(x);

24In the cases where mere invariance of
∫

(
∑

ψiδui) dx entails the existence of first integrals, these do not admit
of the entire group Gρ; for example,

∫

(u′′δu)dx admits of the infinitesimal transformation ∆x = ǫ2, ∆u = ǫ1 + xǫ3;
whereas the first integral u − u′x = const., corresponding to ∆x = 0, ∆u = xǫ3, does not admit of the other
two infinitesimal transformations, since it explicitly contains both u and x. To this first integral, there happen to
correspond infinitesimal transformations for f that contain derivatives. So we see that invariance

∫

. . .
∫

(
∑

ψiδui) dx
is at all events a weaker condition than invariance of I, and this should be noted as to a question raised in a previous
remark.
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that is

∆xi = ǫi, ∆ui = 0, δui = −
∑

λ

∂ui

∂xλ
ǫλ.

Invariance with respect to the displacement group asserts, as we know, that in

I =

∫

. . .

∫

f

(

x, u,
∂u

∂x
, . . .

)

dx, the x’s do not occur explicitly in f . The associated n divergence

relationships
∑

ψi

∂ui

∂xλ
= DivB(λ) (λ = 1, 2, . . . n)

will be referred to as “energy relationships,” since the laws of conservation” DivB(λ) = 0 corre-
sponding to the variation problem answer to “laws of conservation of energy,” and the B(λ)’s to the
“energy components.” So then we have: If I admits of the displacement group, then the energy re-
lationships become improper if and only if I is invariant with respect to an infinite group containing
the displacement group as subgroup.25

An example of such infinite groups is presented by the group of all transformations of the x’s
and such of the induced transformations of the u(x)’s in which only derivatives of the arbitrary
functions p(x) occur; the displacement group is generated by the specialization p(i)(x) = ǫi; but it
must remain undecided whether this — and the groups generated by change of I by a boundary
integral — suffices to give the most general of these groups. Induced transformations of the specified
kind arise, say, when the u’s are subjected to the coefficient transformations of a “total differential
form,” i.e., a form

∑

a dλxi +
∑

b dλ−1xidxκ + . . . containing higher differentials besides the dx’s;
more special induced transformations, in which the p(x)’s occur in first derivative only, are furnished
by the coefficient transformations of ordinary differential forms

∑

c dxi1 . . . dxiλ , and only these have
ordinarily been considered.

Another group of the specified kind — one which, owing to the occurrence of the logarithmic
term, cannot be coefficient transformation — is, say, the following:

y = x+ p(x); vi = ui + ln(1 + p′(x)) = ui + ln
dy

dx
;

∆x = p(x); ∆ui = p′(x); 26 δui = p′(x) − u′ip(x).

The dependencies (16) here become

∑

i

(

ψiu
′

i +
dψi

dx

)

= 0,

and the improper energy relationships

∑

(

ψiu
′

i +
d(ψi + const.)

dx

)

= 0.

A simple invariant integral of the group is

I =

∫

e−2u1

u′1 − u′2
dx.

The most general I is determined by integration of Lie’s differential equation (11)

δf +
d

dx
(f ·∆x) = 0,

25The laws of conservation of energy of classical mechanics as well as those of the old “theory of relativity” (where
∑

dx2 goes over into itself) are “proper,” since no infinite groups occur.
26From these infinitesimal transformations, the finite ones are calculated backwards by the method given in Section

4 at end.
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which by substitution of their values for ∆x and δu, provided f is assumed to depend on only first
derivatives of the u’s, goes over into

∂f

∂x
p(x) +

{

∑ ∂f

∂ui
−
∂f

∂u′i
u′i + f

}

p′(x) +

{

∑ ∂f

∂u′′i

}

p′′(x) = 0

(identically in p(x), p′(x), p′′(x)). This system of equations has solutions for as few as two functions
u(x) actually containing the derivatives, namely

f = (u′1 − u′2)Φ

(

u1 − u2,
e−u1

u′1 − u′2

)

,

where Φ stands for an arbitrary function of the specified arguments.
Hilbert enunciates his assertion to the effect that the failure of proper laws of conservation of

energy is a characteristic feature of the “general theory of relativity.” In order for this assertion to
hold good literally, therefore, the term “general relativity” should be taken in a broader sense than
usual, and extended also to the forgoing groups depending on n arbitrary functions.27

27This again confirms the correctness of a comment of Klein’s that the term “relativity” current in physics is
replaceable by “invariance relative to a group.” (“Über die geometrishen Grundlagen der Lorentzgruppe,” Jhrber. d.
Deutsch. Math. Vereinig. 19 (1910), p. 287, reprinted in the Phys. Zeitschrift.)
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